

Contents
	
About the Summer Work .. 3

Welcome to <SUBJECT> .. 4

Subject outline .. 4

Careers & Higher Education .. 6

Summer work tasks .. 8

Task 1: Different Programming Languages .. 8

Structured Programming ... 9

Task 2: Starting to Program in PYTHON ... 10

Task 3: Determine if a number is a multiple of 7 ... 14

Task 4: Determine if a year is a century ... 14

Task 5: Determine if a year is Leap Year .. 15

Task 6: Calculate the Hypotenuse for a right-angled triangle ... 16

Appendices .. 22

Appendix 1 : What is PYTHON? ... 22

Basic Syntax ... 23

Reading list .. 26

Further Reading and Tasks .. 26

	 	

About the Summer Work

This booklet contains a number of tasks that students are expected to complete to a good
standard in order to be able to be enrolled in this subject.

The tasks are to complete some Programming.

Please do the following:

1. complete the programs as directed

2. copy them onto a Word Document

3. send them as an MS Word document to jpatel@dixons6a.com.

The work handed in should have your name on it and all tasks should have a heading to
indicate the task number – e.g. Task 1, Task 2, etc

This booklet also contains significant additional information and a range of CHALLENGE
tasks. We would encourage you to complete all the tasks, but you do not need to bring any
CHALLENGE tasks to your enrolment interview.

Video help files for this can be found on this YouTube playlist.

https://www.youtube.com/playlist?list=PL4XMAC0Um
RoI9l7JMSipGrUOY2eH6EX65
There is also a section on additional work for learning some web programming. This is not
compulsory but it would be very good if you could complete this!

What you will need

I would recommend that you install PyCharm Educational version onto your computer. You
can get this from the following link: https://www.jetbrains.com/edu-
products/download/#section=pycharm-edu

Alternatively, you will need to install PYTHON 3 on your computer. You can get this from
https://www.python.org/downloads/

Any problems then please email jpatel@dixons6a.com

	
	 	

Welcome to Computer Science
Subject outline
One	perception	of	Computer	Science	is	that	it	is	forever	changing.		Technology	has	
evolved	so	much	that	we	live	in	a	world	where	it	is	difficult	to	image	life	without	
computerised	systems.		However,	this	evolving	technology	is	built	upon	some	solid	
foundations	that	have	stood	since	its	inception	–	this	is	Computer	Science.	
There	are	three	main	strands	to	Computer	Science,	and	these	form	our	"Big	Picture	
Questions":	

• How do computers work?
• How do computers communicate and work together?
• How do we make computers work for us?

Everything	that	we	will	do	falls	under	one	of	these	questions.	
At	Dixons	we	study	AQA	A	level	Computer	Science	which	is	breaks	down	these	themes	
further	and	examines	them	in	three	parts:	

1. Paper 1:

This	paper	tests	your	ability	to	program,	as	well	as	some	theoretical	
knowledge	of	Computer	Science	around	the	question	"How	do	we	make	
computers	work	for	us?"	

2. Paper 2:

This	paper	tests	theoretical	knowledge	of	Computer	Science	around	the	
questions	"How	do	computers	work?"	and	"How	do	computers	
communicate	and	work	together?"	

3. NEA:

The	non-exam	assessment	assesses	your	ability	to	use	the	knowledge	and	
skills	gained	through	the	course	to	solve	or	investigate	a	practical	problem.	
You	will	be	expected	to	follow	a	systematic	approach	to	problem	solving,	

	

What an Excellent Student “Looks Like”
To	study	computer	science	and	get	the	best	out	of	it	you	need	to	have	three	main	
attributes:	

1. You need to have, or be developing, excellent coding skills.

These	are:	
• good programming habits,
• good use of programming techniques
• being able to problem solve quickly
• being able to code across several programming languages

2. You need to have excellent mathematical ability.

In	reality,	computer	science	is	applied	mathematics	so	you	need	to	have	a	very	
good	grasp	of	it	and	be	agile	in	your	thinking!	

3. You need to be hard working, concentrate well and be resilient

Computer	Scientists	are	design	engineers	and	often	have	to	work	at	a	problem	
over	a	long	period	of	time.	Sometimes	things	can	go	wrong	and	you	have	to	start	
again.		You	will	get	frustrated	and	you	need	to	show	good	resilience.	
A	lot	of	work	and	practice	needs	to	take	place	outside	of	lesson	time	so	you	need	
to	be	able	to	concentrate	well	wherever	you	are.		
	 	

Careers & Higher Education
Need some Inspiration?

Computer Science matters!!! https://www.youtube.com/watch?v=_IiPLtP-

jm8&list=PLzdnOPI1iJNfpD8i4Sx7U0y2MccnrNZuP

Computer Science is everywhere!!

https://www.youtube.com/watch?v=QvyTEx1wyOY&feature=youtu.be

Computer Science is for everyone!!! https://www.youtube.com/watch?v=mFPg96gdPkc

Many	careers	are	linked	to	Computer	Science.		Many	students	who	take	this	course	want	

to	go	on	to	a	career	as	a	programmer	–	maybe	you	could	be	the	next	Bill	Gates	or	Mark	

Zuckerberg!	

In	terms	of	the	local	area,	there	are	many	new	niche	sectors	beginning	to	develop	that	

will	require	computer	scientists	in	new	media	and	telecoms,	research	and	development	

in	heavy	and	light	industries	and	growing	Small/Medium	sized	Enterprises.			

Below	are	some	link	to	places	that	you	can	look	for	more	information	and	inspiration:	

A sample of Universities

Computer	Science	at	Oxford	University	

https://www.youtube.com/watch?v=JG-mHQX8eZw	

	

Computer	Science	at	Cambridge	University	

https://www.youtube.com/watch?v=94NgNNs1O3Q&feature=youtu.be	

	

Computer	Science	at	Manchester	University	

https://www.manchester.ac.uk/study/undergraduate/courses/2023/00560/bsc-

computer-science/course-details/#course-profile	

	

Some Different Careers

What	can	you	do	with	a		Computer	Science	Degree?		

https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-

degree/computer-science	

Links to key information:
Click	here	for	the	AQA	Specification	for	A	Level	Computer	Science:	
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-
science-7516-7517/subject-content-a-level	
	
	
	 	

Summer work tasks
Task 1: Different Programming Languages
There	are	many	programming	languages	that	are	used	in	technology.	

This	task	is	to	find	out	a	little	bit	different	languages		-	watch	this	video:	

https://youtu.be/7bE2mI4ePeU			

Summarise	the	contents	of	the	video	in	a	table	with	the	following	headings	–	one	

example	is	already	completed	for	you	to	follow.	

Language Where this language is used

JavaScript This language is used on webpages to control what happens when users interact

with it

		

	 	

Structured Programming
The	initial	approach	to	programming	that	we	use	at	Dixons	Sixth	Form	Academy	is	

called	Structured	Programming.		This	means	that	our	programs	will	always	be	broken	

down	into	

1. a	main	routine	to	"control"	the	sequence	

2. and	then	subroutines	(functions)	to	be	"workers"	that	complete	tasks	for	us	

This	diagram	shows	this	for	a	simple	problem	for	checking	odd	numbers:	

	

The	main	"control"	routine	is	on	Level	0	and	it	uses	"worker"	subroutines	to	complete	

tasks.	

So,	from	the	diagram	you	can	see	that	the	main	routine	calls	workers	to:	

o get	a	valid	number	

o determine	if	the	number	is	odd	

Let's	try	writing	and	running	a	program	to	see	this	in	action.	

	 	

Task 2: Starting to Program in PYTHON
Program: Odd number checker

Using	PYHTON	(installed	on	your	computer)	read	through	the	explanations,	type	up	the	

program	and	run	it.	

You	must	complete	Steps	1	to	4	BEFORE	trying	to	run	the	program.	

Step 1: Write the MAIN Routine

	
Things to note:

1. The	name	of	the	routine	is	preceded	by	a	def	key	word.		This	is	a	"	definition	

for	a	subroutine".		This	is	the	control	routine	and	is	ALWAYS	called	main.	

2. There	are	comments	in	the	code	–	this	is	GOOD	PRACTICE	and	we	want	all	of	

your	programs	to	be	written	with	these	comments	in	them	so:	

a. All	variables	used	should	be	listed	with	the	type	that	they	will	be	and	

what	data	they	will	hold.		For	example,	number	is	a	string	(text)	and	

will	hold the inputted number.	

b. Sections	of	code	should	be	commented.		This	will	aid	debugging	(finding	

errors)	and	will	help	you	to	direct	the	flow	the	program.	

c. PYTHON	doesn't	use	and	END	statements	for	IFs	or	LOOPS	but	these	are	

included	here	as	comments.		This	will	help	you	to	read	the	code	and	

understand	it	better.	

Step 2: write the subroutine getNatural()

	

Things to note:

1. Notice	that	the	first	comment	identifies	the	section	of	code	as	a	subroutine	

and	states	that	it	will	return an integer.	

2. All	variables	are	listed	

3. Sections	of	code	are	commented.			

4. END	IF	and	END	WHILE	are	written	in	as	comments.	

5. The	number	is	tested	for	being	a	natural	number	by	using	a	string	method	called	

isdigit().		This	method	will	return	true	if	the	string	contains	just	digits	

(0-9)	and	false	if	it	contains	something	else.		This	give	us	just	Natural	

numbers	(greater	than	0)	not	integers.	

6. The	number	is	returned	as	an	INTEGER	to	the	calling	routine	by	using	the	built-

in	int()	function.		This	takes	a	string	as	a	parameter	and	returns	

an	integer.	

Step 3: Write the subroutine determineIfOdd()

	
Things to note:

1. Notice	that	the	first	comment	identifies	the	section	of	code	as	a	subroutine	

and	states	that	it	will	return a value.		

2. This	subroutine	has	a	parameter	that	is	written	in the brackets.	

3. All	parameters	and	variables	are	listed	

4. Sections	of	code	are	commented.			

5. END	IF	is	written	in	as	a	comment.	

	 	

Step 4: enable the program to run

	
Things to note:

1. This	line	of	code	runs	the	main	routine.		Without	it,	the	program	will	not	run!	

Step 5: Run your code and Test it
Testing the Program

	It	is	always	important	to	test	the	program	that	you	write	to	ensure	that	it	works.		This	is	

done	using	a	Test	Plan:	

Number Type of Test Expected Result Success

53 Real YES

10 Real NO

2122345 Real YES

X Erroneous You will be asked to enter the

number again

Step 6: In Word

1. Copy	the	entire	code	to	a	Word	Document	under	the	heading	Task	2.	

2. Draw	a	Test	Plan	table	and	put	suitable	tests	into	it	

3. Carry	out	the	tests	and	indicate	on	the	table	if	they	were	successful	or	not.	

	 	

Task 3: Determine if a number is a multiple of 7
Your	task	is	to	adapt	the	program	that	you	have	just	written	so	that	instead	of	

determining	if	a	number	is	odd,	it	determines	if	it	is	a	multiple	of	7.	

Repeat	the	same	steps	as	for	Task	2	but	write	a	new	subroutine	called	

determineIfMultipleOfSeven()	that	will	perform	the	task	required.	

Final Step: In Word

1. Copy	the	entire	code	to	a	Word	Document	under	the	heading	Task	3.	

2. 	Draw	a	Test	Plan	table	and	put	suitable	tests	into	it	

3. Carry	out	the	tests	and	indicate	on	the	table	if	they	were	successful	or	not.	

Task 4: Determine if a year is a century
Your	task	is	to	adapt	the	program	that	you	have	just	written	so	that	instead	of	

determining	if	a	number	is	a	multiple	of	seven,	it	determines	if	the	year	entered	is	a	

century.	

Repeat	the	same	steps	as	for	Task	2	and	3	but	write	a	new	subroutine	called	

determineIfCentury()	that	will	perform	the	task	required.	

Final Step: In Word:

1. Copy	the	entire	code	to	a	Word	Document	under	the	heading	Task	3.	

2. 	Draw	a	Test	Plan	table	and	put	suitable	tests	into	it	

3. Carry	out	the	tests	and	indicate	on	the	table	if	they	were	successful	or	not.	

	 	

Task 5: Determine if a year is Leap Year
CHALLENGE YOURSELF

This	is	a	harder	task	and	requires	a	little	more	thought.	

A	year	is	a	leap	year	if	it	is	divisible	by	4.		However,	if	the	year	is	a	century,	it	is	

only	a	leap	year	if	it	is	divisible	by	400.	

Your	task	is	to	adapt	the	program	that	you	have	just	written	so	that	instead	of	

determining	if	a	year	is	a	century,	it	determines	if	the	year	entered	is	a	leap	year.	

Repeat	the	same	steps	as	for	Task	2,	3	&	4	but	write	a	new	subroutine	called	

determineIfLeapYear()	that	will	perform	the	task	required.	

Final Step: In Word:

1. Copy	the	entire	code	to	a	Word	Document	under	the	heading	Task	5.	

2. 	Draw	a	Test	Plan	table	and	put	suitable	tests	into	it	

3. Carry	out	the	tests	and	indicate	on	the	table	if	they	were	successful	or	not.	

	 	

Task 6: Calculate the Hypotenuse for a right-angled triangle
From	GCSE	Mathematics	you	will	understand	how	Pythagoras'	Theorem	works:	

	

Here	both	a	and	b	need	validating	as	real	(decimal)	numbers	that	are	larger	than	0.			

Rather	than	clutter	up	the	main	algorithm	with	the	validation	we	can	use	the	same	

SUBROUTINE	TWICE.	

	 	

Step 1: write the MAIN routine

You	should	be	able	to	do	this	yourself	but	here	is	the	code:	

	

Step 2: write the subroutine testForReal()

This	subroutine	contains	a	new	construct	to	help	trap	errors	so	that	they	don't	crash	the	

program.		This	is	called	TRY	and	EXCEPT.	

Whatever	is	in	the	TRY	block	will	be	tried	–	if	there	is	an	error,	the	EXCEPT	block	takes	

over.		So	the	code	works	like	this	by	testing	a	conversion	of	the	number	to	a	float	(real	

number):	 	

Step 3: Write the subroutine getPositiveReal()

Please	note:	

1. Make	sure	that	you	RETURN	the	number	as	a	float	–	that	is	the	data	type	it	will	

need	to	be	in	the	MAIN	routine.	

Step 4: Write the subroutine calculateHypotneuse()

This	subroutine	needs	to	use	some	mathematical	subroutines	that	are	found	in	

PYHTON's	math	library.		To	use	this,	we	import	it.		Add	this	line	as	the	FIRST	line	of	

your	code:	

	

Now,	you	can	use	the	pow()	and	sqrt()	functions	to	do	the	calculation.			These	

need	to	be	prefixed	by	the	name	of	the	library	that	they	are	in.		

	

• pow()	is	the	function	for	powers	and	has	two	parameters	–	the	number	base	

and	the	exponent.	

• sqrt()	is	the	square	root	function	and	has	one	parameter	–	the	number	to	

find	the	square	root	of.			

Step 5: Write the subroutine displayMessage()

	 	

Step 6: Write the subroutine displayReal()

This	needs	to	ensure	that	the	real	number	is	shown	to	two	decimal	places.	

This	is	done	by	setting	up	a	format	pattern	and	then	applying	it	to	the	output.	

The	number	of	decimal	places	(dp)	is	passed	in	as	a	parameter	and	then	it	is	used	to	

construct	a	pattern:	

{:0.3f}

This	means	that	there	will	be	3	places	after	the	decimal	point	and	there	will	be	no	extra	

padding	at	the	beginning	of	the	number.	

The	code	looks	like	this:	

	

Step 6: enable the program to run

	
Things to note:

1. This	line	of	code	runs	the	main	routine.		Without	it,	the	program	will	not	run!	

	 	

Step 7: Run your code and Test it
Testing the Program

Complete	the	Expected	Result	column.	

a b Type of Test Expected Result Success

3 4 Real c = 5

120 140 Real

18.3 33.5 Real

0 Erroneous

5 0 Erroneous

a Erroneous

56 b Erroneous

	

Step 8: In Word:

1. Copy	the	entire	code	to	a	Word	Document	under	the	heading	Task	6.	

2. 	Draw	a	Test	Plan	table	and	put	suitable	tests	into	it	

3. Carry	out	the	tests	and	indicate	on	the	table	if	they	were	successful	or	not.	

	
	 	

Appendices
Appendix 1 : What is PYTHON?
Python	is	a	widely	used	high-level	programming	language	for	general-purpose	

programming,	created	by	Guido	van	Rossum	and	first	released	in	1991.		

An	interpreted	language,	Python	has	a	design	philosophy	that	emphasizes	code	

readability	(notably	using	whitespace	indentation	to	delimit	code	blocks	rather	than	

curly	brackets	or	keywords),	and	a	syntax	that	allows	programmers	to	express	concepts	

in	fewer	lines	of	code	than	might	be	used	in	languages	such	as	C++	or	Java.	

The	language	provides	constructs	intended	to	enable	writing	clear	programs	on	both	a	

small	and	large	scale.	

Python	features	a	dynamic	type	system	and	automatic	memory	management	and	

supports	multiple	programming	paradigms,	including	object-oriented,	imperative,	

functional	programming,	and	procedural	styles.	It	has	a	large	and	comprehensive	

standard	library.	

Python	interpreters	are	available	for	many	operating	systems,	allowing	Python	code	to	

run	on	a	wide	variety	of	systems.	CPython,	the	reference	implementation	of	Python,	is	

open	source	software	and	has	a	community-based	development	model,	as	do	nearly	all	

of	its	variant	implementations.	CPython	is	managed	by	the	non-profit	Python	Software	

Foundation.	

(from	Wikipedia	October,	2017)	

	 	

Basic Syntax
The	basic	syntax	in	PYTHON	is	near	to	English.	

There	is	a	specific	syntax	that	we	will	use	and	there	are	some	rules	for	using	them.	

Input
pseudocode
INPUT identifier

PYTHON
identifier = input('prompt')

Output
Pseudocode
OUTPUT statement

PYTHON
print('message')

Selection
Pseudocode
IF condition THEN
 statement(s)
ELSEIF
 statement(s)
ELSE
 statement(s)
END IF

PYTHON
if condition:
 #statement(s)
elif:
 #statement(s)
else:
 #statement(s)

	 	

Conditional Statements

Conditional	statements	are	those	that	result	in	either	TRUE	or	FALSE.		Operators	are	

used	to	make	comparisons.			

operator meaning Example (a=7, b=4)

== If the values of two operands are equal,
then the condition becomes true.

(a == b) is not True.

!= If values of two operands are not equal,
then condition becomes true.

 (a != b) is True.

> If the value of left operand is greater than
the value of right operand, then condition
becomes true.

(a > b) is True.

< If the value of left operand is less than the
value of right operand, then condition
becomes true.

(a < b) is not True.

>= If the value of left operand is greater than or
equal to the value of right operand, then
condition becomes true.

(a >= b) is True.

<= If the value of left operand is less than or
equal to the value of right operand, then
condition becomes true.

(a <= b) is True.

Chaining Conditions

Conditions	can	be	chained	together	by	using	LOGICAL	operators:	

Operator Description Example (a=True, b=False)

and Logical AND
If both the operands are true then
condition becomes true.

(a and b) is False.

or Logical OR
If any of the two operands are non-zero
then condition becomes true.

(a or b) is True.

not Logical NOT
Used to reverse the logical state of its
operand.

not (a and b) is True.

	

Iteration
Pseudocode
FOR counter, condition, step DO
 statement(s)
END FOR

PYTHON
for counter in range(1, 10):
 #statement(s)

Pseudocode
FOR EACH item IN List/Array/Set DO
 statement(s)
END FOR

PYTHON
for item in list:
 #statement(s)

Pseudocode
WHILE condition DO
 statement(s)
END WHILE

PYTHON
while condition:
 #statement(s)

Rules

1. identifiers	must	have	meaningful	names	

2. identifiers	must	not	have	spaces	and	must	use	Camel	Case	

3. always	input	one	value	at	a	time	

4. Lists,	Arrays	and	Sets	start	with	an	index	of	0	

	

Reading list
Further Reading and Tasks
One	of	the	fundamental	programming	tasks	that	you	will	learn	about	in	this	course	is	

that	of	Web	Programming.	

In	order	to	prepare	for	that	you	could	do	this	course	on	Code.org.	

You	will	need	to	sign	up,	watch	videos	and	then	complete	the	tasks.	

Keep	a	record	of	what	you	do	by	taking	screenshots	of	your	work	and	compiling	it	on	a	

MS	WORD	page.		

Step 1: Go to Code.org
Step 2: Find the course

	
You	need	to	choose	Event	Driven	Programming	in	App	Lab	

Step 3: Sign up to the website
Step 4: Complete the Course

You	will	find	videos,	tasks	and	much	more	in	here.	

	

