Edexcel

Exercise 1:

Simplifying indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $\quad a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Example 1 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$\frac{6 x^{5}}{2 x^{2}}=3 x^{3}$	$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 2 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
\frac{x^{3} \times x^{5}}{x^{4}} & =\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4}
\end{aligned}
$$

1 Use the rule $a^{m} \times a^{n}=a^{m+n}$

2 Use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$

Example 3 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 4 Write $\frac{4}{\sqrt{x}}$ as a single power of x

| $\frac{4}{\sqrt{x}}$ | $=\frac{4}{x^{\frac{1}{2}}}$ | 1Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$
 $=4 x^{-\frac{1}{2}}$ |
| ---: | :--- | :--- |$\quad 2$ Use the rule $\frac{1}{a^{m}}=a^{-m}$

Practice questions

1 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!

Remember that any value raised to the power of zero is 1 . This is the rule $a^{0}=1$.

2 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

3 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
c $x^{\frac{1}{5}}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
f $x^{-\frac{3}{4}}$

Edexcel

Answers

1 a $\frac{3 x^{3}}{2}$
b $5 x^{2}$
c $3 x$
d $\frac{y}{2 x^{2}}$
e $y^{\frac{1}{2}}$
f c^{-3}
g $2 x^{6}$
h x

2 a x^{-1}
b $\quad x^{-7}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{3}}$
c $\quad x^{\frac{1}{4}}$
f $x^{-\frac{2}{3}}$

3 a $\frac{1}{x^{3}}$
b $\quad 1$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$

Edexcel

Exercise 2:

Simplifying fractions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Example 1 Evaluate 10^{0}

$$
10^{0}=1
$$

Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$$
\left.9^{\frac{1}{2}}=\sqrt{9} \quad \right\rvert\, \text { Use the rule } a^{\frac{1}{n}}=\sqrt[n]{a}
$$

Example 3 Evaluate $27^{\frac{2}{3}}$

$$
\begin{aligned}
27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} \\
& =3^{2} \\
& =9
\end{aligned}
$$

1 Use the rule $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$
2 Use $\sqrt[3]{27}=3$

Pearson

Edexcel

Example 4 Evaluate 4^{-2}

4^{-2}	$=\frac{1}{4^{2}}$	
	$=\frac{1}{16}$	$\mathbf{1}$ Use the rule $a^{-m}=\frac{1}{a^{m}}$
$\mathbf{2}$ Use $4^{2}=16$		

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$\frac{6 x^{5}}{2 x^{2}}=3 x^{3}$	$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to
	give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
\frac{x^{3} \times x^{5}}{x^{4}} & =\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4}
\end{aligned}
$$

1 Use the rule $a^{m} \times a^{n}=a^{m+n}$
2 Use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}}$	$=\frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$
	$=4 x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^{m}}=a^{-m}$

Edexcel

Example $9 \quad$ Simplify $\frac{x^{5}}{x^{2}}$

$\frac{x^{5}}{x^{2}}=x^{3} \quad$	use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 10 Simplify $6 x^{6} \times 3 x^{4}$

$6 x^{6} \times 3 x^{4}=18 x^{2}$	$6 \times 3=18$ and then use the rule $a^{m} \times a^{n}=a^{m+n}$ $x^{6} \times x^{4}=x^{6+4}=x^{10}$

Example 11 Simplify $\left(x^{4}\right)^{2} \times 3 x^{5}$

$\left(x^{4}\right)^{2} \times 3 x^{5}=3 x^{13}$	$3 \times 1=3$ and then use the rule $\left(a^{m}\right)^{n}=a^{m n}$ give $a^{m} \times a^{n}=a^{m+n}$ $\left(x^{4}\right)^{2} \times x^{5}=x^{4 \times 2} \times x^{5}$ $=x^{8} \times x^{5}$ $=$
$=x^{8+5}$	
$=x^{13}$	

Practice questions

1 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x-\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$
d $\frac{6 x^{5}+3 x^{4}}{3 x^{2}}$
e $\quad \frac{5 x^{5}+20 x^{4}}{10 x^{2}}$
f $\frac{7 x^{5}-5 x^{4}}{2 x^{6}}$

Answers

1 a $x^{3}+x^{-2}$
b $x^{3}-x$
c $\quad x^{-2}+x^{-7}$
d $2 x^{3}+x^{2}$
e $\quad 0.5 x^{3}+2 x^{2}$
f $\quad 3.5 x^{-1}-2.5 x^{-2}$

Edexcel

Exercise 3:

Expanding brackets and surds

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Example $1 \quad$ Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

$$
\begin{aligned}
& (\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2}) \\
& =\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4} \\
& =7-2 \\
& =5
\end{aligned}
$$

1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^{2}=49$

2 Collect like terms:

$$
\begin{aligned}
-\sqrt{7} \sqrt{2} & +\sqrt{2} \sqrt{7} \\
= & -\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0
\end{aligned}
$$

Edexcel

Practice questions

1 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $\quad(5+\sqrt{2})(6-\sqrt{8})$

2 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$
3 Work out the value of $(\sqrt{2}+\sqrt{8})^{2}$
4 Expand $(1+\sqrt{2})(3-\sqrt{2})$
Give your answer in the form $a+b \sqrt{2}$ where a and b are integers.
$5 A B D$ is a right angled triangle.

All measurements are given in centimetres.
C is the point on $B D$ such that $C D=\frac{\sqrt{3}}{3}$
$A D=B D=\frac{\sqrt{2}}{2}$
Work out the exact area, in cm^{2}, of the shaded region.

6 The diagram shows a triangle $D E F$ inside a rectangle $A B C D$.

Diagram NOT accurately drawn

Show that the area of triangle $D E F$ is $8 \mathrm{~cm}^{2}$.
You must show all your working.

P Pearson
Edexcel

P Pearson Edexcel

7 The diagram shows a triangle $D E F$ inside a rectangle $A B C D$.

$$
\begin{aligned}
& a=\sqrt{8}+2 \\
& b=\sqrt{8}-2 \\
& T=a^{2}-b^{2}
\end{aligned}
$$

Work out the value of T.
Give your answer in the form $c \sqrt{2}$ where c is an integer.

Edexcel

Answers

1 a -1
b $\quad 9-\sqrt{3}$
c $\quad 10 \sqrt{5}-7$
d $26-4 \sqrt{2}$
$2 x-y$
$3 \quad 18$
$4 \quad 1+2 \sqrt{2}$
$5 \quad \frac{1}{4}-\frac{\sqrt{6}}{12}$
Method:
$\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$ or $\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$
$\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}-\frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$
$\frac{1}{4}-\frac{\sqrt{6}}{12}$ oe
OR
$(B C=) \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}$
$\frac{1}{2} \times\left\{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right\} \times \frac{\sqrt{2}}{2}$
$\frac{1}{4}-\frac{\sqrt{6}}{12}$ oe

68
Method:

$$
\begin{aligned}
& (2 \sqrt{10})^{2}-2^{2}(=36) \\
& (C D=) 6 \\
& { }^{\prime} 6^{\prime} \times 4-\frac{1}{2} \times{ }^{\prime} 6 \prime \times 2-\frac{1}{2} \times 2 \times 2-\frac{1}{2} \times\left({ }^{\prime} 6 \prime-2\right) \times 4
\end{aligned}
$$

$7 \quad 16 \sqrt{2}$

Exercise 4:

Factorising quadratics

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Example 1 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \text { So } \begin{aligned}
x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2)
2 Rewrite the b term ($3 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 2 Factorise $6 x^{2}-11 x-10$

$$
\begin{aligned}
& b=-11, a c=-60 \\
& \text { So } \\
& \begin{aligned}
6 x^{2}-11 x-10 & =6 x^{2}-15 x+4 x-10 \\
& =3 x(2 x-5)+2(2 x-5) \\
& =(2 x-5)(3 x+2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
2 Rewrite the b term ($-11 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(2 x-5)$ is a factor of both terms

Example 3 Factorise $4 x^{2}-25 y^{2}$

$$
4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)
$$

This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Pearson
Edexcel

Practice questions

1 Factorise
a $\quad x^{2}+7 x+12$
b $x^{2}+5 x-14$
c $x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $x^{2}-7 x-18$
f $x^{2}+x-20$
g $\quad x^{2}-3 x-40$
h $x^{2}+3 x-28$

2 Factorise fully
a $y^{2}-100$
b $36 x^{2}-49 y^{2}$
c $4 x^{2}-81 y^{2}$
d $\quad 18 a^{2}-200 b^{2} c^{2}$

3 Factorise fully
a $2 x^{2}+x-3$
b $6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

Answers

1 a $(x+3)(x+4)$
c $(x-5)(x-6)$
e $(x-9)(x+2)$
g $(x-8)(x+5)$
2 a $(y-10)(y+10)$
c $(2 x-9 y)(2 x+9 y)$
3 a $(x-1)(2 x+3)$
c $\quad(2 x+1)(x+3)$
e $\quad(5 x+3)(2 x+3)$
b $(x+7)(x-2)$
d $(x-8)(x+3)$
f $(x+5)(x-4)$
h $(x+7)(x-4)$
b $(6 x-7 y)(6 x+7 y)$
d $2(3 a-10 b c)(3 a+10 b c)$
b $\quad(3 x+1)(2 x+5)$
d $\quad(3 x-1)(3 x-4)$
f $2(3 x-2)(2 x-5)$

Exercise 5:

Solving quadratic equations

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $a x^{2}+b x+c=0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose products is $a c$.
- When the product of two numbers is 0 , then at least one of the numbers must be 0 .
- If a quadratic can be solved it will have two solutions (these may be equal).

Example 1 Solve $5 x^{2}=15 x$

$5 x^{2}=15 x$	Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero.
$5 x^{2}-15 x=0$	Do not divide both sides by x as this would lose the solution $x=0$.
$5 x(x-3)=0$	$\mathbf{2}$Factorise the quadratic equation. $5 x$ is a common factor.
So $5 x=0$ or $(x-3)=0$	When two values multiply to make zero, at least one of the values must be zero.
Therefore $x=0$ or $x=3$	$\mathbf{4}$Solve these two equations.

Example 2 Solve $x^{2}+7 x+12=0$
$x^{2}+7 x+12=0$
$b=7, a c=12$
$x^{2}+4 x+3 x+12=0$
$x(x+4)+3(x+4)=0$
$(x+4)(x+3)=0$
So $(x+4)=0$ or $(x+3)=0$
Therefore $x=-4$ or $x=-3$

1 Factorise the quadratic equation.
Work out the two factors of $a c=12$ which add to give you $b=7$. (4 and 3)
2 Rewrite the b term (7x) using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x+4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Example 3 Solve $9 x^{2}-16=0$

$$
\begin{aligned}
& 9 x^{2}-16=0 \\
& (3 x+4)(3 x-4)=0 \\
& \text { So }(3 x+4)=0 \text { or }(3 x-4)=0 \\
& x=-\frac{4}{3} \text { or } x=\frac{4}{3}
\end{aligned}
$$

1 Factorise the quadratic equation. This is the difference of two squares as the two terms are $(3 x)^{2}$ and $(4)^{2}$.
2 When two values multiply to make zero, at least one of the values must be zero.
3 Solve these two equations.

Example 4 Solve $2 x^{2}-5 x-12=0$

$$
\begin{aligned}
& b=-5, a c=-24 \\
& \text { So } 2 x^{2}-8 x+3 x-12=0 \\
& 2 x(x-4)+3(x-4)=0 \\
& (x-4)(2 x+3)=0 \\
& \text { So }(x-4)=0 \text { or }(2 x+3)=0 \\
& x=4 \text { or } x=-\frac{3}{2}
\end{aligned}
$$

1 Factorise the quadratic equation.
Work out the two factors of $a c=-24$ which add to give you $b=-5$.
(-8 and 3)
2 Rewrite the b term $(-5 x)$ using these two factors.
3 Factorise the first two terms and the last two terms.
$4(x-4)$ is a factor of both terms.
5 When two values multiply to make zero, at least one of the values must be zero.
6 Solve these two equations.

Practice questions

1 Solve
a $\quad 6 x^{2}+4 x=0$
b $\quad 28 x^{2}-21 x=0$
c $\quad x^{2}+7 x+10=0$
d $x^{2}-5 x+6=0$
e $\quad x^{2}-3 x-4=0$
f $x^{2}+3 x-10=0$
g $\quad x^{2}-10 x+24=0$
h $x^{2}-36=0$
i $\quad x^{2}+3 x-28=0$
j $\quad x^{2}-6 x+9=0$
k $\quad 2 x^{2}-7 x-4=0$
l $3 x^{2}-13 x-10=0$

2 Solve
a $\quad x^{2}-3 x=10$
b $\quad x^{2}-3=2 x$
c $\quad x^{2}+5 x=24$
d $x^{2}-42=x$
e $\quad x(x+2)=2 x+25$
f $\quad x^{2}-30=3 x-2$
g $\quad x(3 x+1)=x^{2}+15$
h $3 x(x-1)=2(x+1)$

Hint

Get all terms onto one side of the equation.

Edexcel

Answers

1 a $\quad x=0$ or $x=-\frac{2}{3}$
c $\quad x=-5$ or $x=-2$
e $\quad x=-1$ or $x=4$
g $\quad x=4$ or $x=6$
i $\quad x=-7$ or $x=4$
k $\quad x=-\frac{1}{2}$ or $x=4$

2 a $\quad x=-2$ or $x=5$
c $\quad x=-8$ or $x=3$
e $\quad x=-5$ or $x=5$
g $\quad x=-3$ or $x=2 \frac{1}{2}$
b $\quad x=0$ or $x=\frac{3}{4}$
d $\quad x=2$ or $x=3$
f $\quad x=-5$ or $x=2$
h $x=-6$ or $x=6$
j $\quad x=3$
l $x=-\frac{2}{3}$ or $x=5$
b $\quad x=-1$ or $x=3$
d $\quad x=-6$ or $x=7$
f $\quad x=-4$ or $x=7$
h $x=-\frac{1}{3}$ or $x=2$

Exercise 6:
 Simplifying algebraic fractions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Example 1 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \text { So } \begin{aligned}
x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2)
2 Rewrite the b term ($3 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 2 Factorise $6 x^{2}-11 x-10$

$$
\begin{aligned}
& b=-11, a c=-60 \\
& \text { So } \\
& \begin{aligned}
6 x^{2}-11 x-10 & =6 x^{2}-15 x+4 x-10 \\
& =3 x(2 x-5)+2(2 x-5) \\
& =(2 x-5)(3 x+2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
2 Rewrite the b term ($-11 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(2 x-5)$ is a factor of both terms

Example 3 Factorise $4 x^{2}-25 y^{2}$

$$
4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)
$$

This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Example 4 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$
$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$
For the numerator:
$b=-4, a c=-21$

So	
$x^{2}-4 x-21$	$=x^{2}-7 x+3 x-21$
	$=x(x-7)+3(x-7)$
	$=(x-7)(x+3)$

For the denominator:
$b=9, a c=18$
So
$2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$
$=2 x(x+3)+3(x+3)$
$=(x+3)(2 x+3)$
So

$$
\begin{aligned}
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9} & =\frac{(x-7)(x+3)}{(x+3)(2 x+3)} \\
& =\frac{x-7}{2 x+3}
\end{aligned}
$$

1 Factorise the numerator and the denominator

2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)

3 Rewrite the b term ($-4 x$) using these two factors
4 Factorise the first two terms and the last two terms
$5(x-7)$ is a factor of both terms
6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)

7 Rewrite the b term ($9 x$) using these two factors
8 Factorise the first two terms and the last two terms
$9(x+3)$ is a factor of both terms
$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Practice questions

1 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

2 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

3 Simplify $\sqrt{x^{2}+10 x+25}$

4 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

Edexcel

Answers

1 a $\frac{2(x+2)}{x-1}$
b $\frac{x}{x-1}$
c $\frac{x+2}{x}$
d $\frac{x}{x+5}$
e $\frac{x+3}{x}$
f $\frac{x}{x-5}$

2 a $\frac{3 x+4}{x+7}$
b $\frac{2 x+3}{3 x-2}$
c $\frac{2-5 x}{2 x-3}$
d $\frac{3 x+1}{x+4}$
$3(x+5)$
$4 \frac{4(x+2)}{x-2}$

Edexcel

Exercise 7:

Complete the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square lets you write a quadratic equation in the form $p(x+q)^{2}+r$

Examples

Example 1 Complete the square for the expression $x^{2}+6 x$

$x^{2}+6 x$	Write $x^{2}+b x+c$ in the form $=\left(x+\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}$
$=(x+3)^{2}-9$	$\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$ Simplify.

Example 2 Complete the square for the expression $2 x^{2}-7 x$

$$
\begin{aligned}
& 2 x^{2}-7 x \\
& =2\left(x^{2}-\frac{7}{2} x\right) \\
& =2\left[\left(x-\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}\right] \\
& =2\left(x-\frac{7}{4}\right)^{2}-\frac{49}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form
$a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{7}{2} x$ in the form $\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}$

3 Expand and Simplify

Practice questions

1 Complete the square for the following expressions:
a $x^{2}+8 x$
b $x^{2}-10 x$
c $\quad x^{2}-x$
d $3 x^{2}-15 x$
e $\quad 12 x-2 x^{2}$

Answers

1 Solve by completing the square.
a $(x+4)^{2}-16$
b $(x-5)^{2}-25$
c $\quad\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}$
d $3\left(x-\frac{5}{2}\right)^{2}-\frac{75}{4}$
e $\quad-2(x-3)^{2}+18$

Exercise 8:
 Solving linear simultaneous equations by elimination

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Example 1 Solve the simultaneous equations $3 x+y=5$ and $x+y=1$

$3 x+y=5$ $-\quad x+y=1$
$2 x \quad=4$
So $x=2$
Using $x+y=1$
$2+y=1$
So $y=-1$
Check:
equation 1: $3 \times 2+(-1)=5 \quad$ YES
equation 2: $2+(-1)=1 \quad$ YES

1 Subtract the second equation from the first equation to eliminate the y term.

2 To find the value of y, substitute $x=2$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Example 2 Solve $x+2 y=13$ and $5 x-2 y=5$ simultaneously.

$\quad x+2 y=13$
$+\quad 5 x-2 y=5$
$6 x \quad=18$
So $x=3$
Using $x+2 y=13$
$3+2 y=13$
So $y=5$
Check:
equation 1: $3+2 \times 5=13 \quad$ YES
equation $2: 5 \times 3-2 \times 5=5$

1 Add the two equations together to eliminate the y term.

2 To find the value of y, substitute $x=3$ into one of the original equations.

3 Substitute the values of x and y into both equations to check your answers.

Practice questions

Solve these simultaneous equations.

$$
1 \quad \begin{aligned}
& 4 x+y=8 \\
& \\
& x+y=5
\end{aligned}
$$

$23 x+y=7$
$3 x+2 y=5$
$3 \quad 4 x+y=3$
$3 x-y=11$
$4 \begin{aligned} & 3 x+4 y=7 \\ & \\ & x-4 y=5\end{aligned}$
$5 \quad 2 x+y=11$
$x-3 y=9$
$6 \quad 2 x+3 y=11$
$3 x+2 y=4$
$7 \quad 4 x+y=25$

$$
x-3 y=16
$$

Answers

$1 x=1, y=4$
$2 x=3, y=-2$
$3 x=2, y=-5$
$4 x=3, y=-\frac{1}{2}$
$5 x=6, y=-1$
$6 x=-2, y=5$
$7 x=7, y=-3$

