

Computer Science

Contents

About the Summer Work ... 2

Welcome to <SUBJECT> ... 3

Subject outline.. 3

Careers & Higher Education ... 5

Summer work tasks .. 7

Task 1: Different Programming Languages ... 7

Structured Programming .. 8

Task 2: Starting to Program in PYTHON .. 9

Task 3: Determine if a number is a multiple of 7 .. 13

Task 4: Determine if a year is a century .. 13

Task 5: Determine if a year is Leap Year ... 14

Task 6: Calculate the Hypotenuse for a right-angled triangle .. 15

Appendices ... 21

Appendix 1 : What is PYTHON? ... 21

Basic Syntax ... 22

Reading list ... 25

Further Reading and Tasks .. 25

About the Summer Work

This booklet contains a number of tasks that students are expected to complete to a good
standard in order to be able to be enrolled in this subject.

The tasks are to complete some Programming.

Please do the following:

1. complete the programs as directed

2. copy them onto a Word Document

3. send them as an MS Word document to jpatel@dixons6a.com.

The work handed in should have your name on it and all tasks should have a heading to
indicate the task number – e.g. Task 1, Task 2, etc

This booklet also contains significant additional information and a range of CHALLENGE
tasks. We would encourage you to complete all the tasks, but you do not need to bring any
CHALLENGE tasks to your enrolment interview.

Video help files for this can be found on this YouTube playlist.

https://www.youtube.com/playlist?list=PL4XMAC0Um
RoI9l7JMSipGrUOY2eH6EX65
There is also a section on additional work for learning some web programming. This is not
compulsory but it would be very good if you could complete this!

What you will need

I would recommend that you install pyCharm Educational version onto your computer. You
can get this from JetBrains here

Alternatively, you will need to install PYTHON 3 on your computer. You can get this from
https://www.python.org/downloads/

Any problems then please email jpatel@dixons6a.com

https://www.youtube.com/playlist?list=PL4XMAC0UmRoI9l7JMSipGrUOY2eH6EX65
https://www.youtube.com/playlist?list=PL4XMAC0UmRoI9l7JMSipGrUOY2eH6EX65
https://www.jetbrains.com/edu-products/download/#section=pycharm-edu
https://www.python.org/downloads/

Welcome to Computer Science
Subject outline
One perception of Computer Science is that it is forever changing. Technology has evolved

so much that we live in a world where it is difficult to image life without computerised

systems. However, this evolving technology is built upon some solid foundations that have

stood since its inception – this is Computer Science.

There are three main strands to Computer Science, and these form our "Big Picture

Questions":

• How do computers work?

• How do computers communicate and work together?

• How do we make computers work for us?

Everything that we will do falls under one of these questions.

At Dixons we study AQA A level Computer Science which is breaks down these themes

further and examines them in three parts:

1. Paper 1:

This paper tests your ability to program, as well as some theoretical knowledge

of Computer Science around the question "How do we make computers work

for us?"

2. Paper 2:

This paper tests theoretical knowledge of Computer Science around the

questions "How do computers work?" and "How do computers communicate

and work together?"

3. NEA:

The non-exam assessment assesses your ability to use the knowledge and skills

gained through the course to solve or investigate a practical problem. You will be

expected to follow a systematic approach to problem solving,

What an Excellent Student “Looks Like”

To study computer science and get the best out of it you need to have three main

attributes:

1. You need to have, or be developing, excellent coding skills.

These are:

• good programming habits,

• good use of programming techniques

• being able to problem solve quickly

• being able to code across several programming languages

2. You need to have excellent mathematical ability.

In reality, computer science is applied mathematics so you need to have a very good

grasp of it and be agile in your thinking!

3. You need to be hard working, concentrate well and be resilient

Computer Scientists are design engineers and often have to work at a problem over

a long period of time. Sometimes things can go wrong and you have to start again.

You will get frustrated and you need to show good resilience.

A lot of work and practice needs to take place outside of lesson time so you need to

be able to concentrate well wherever you are.

Careers & Higher Education

Need some Inspiration?

Computer Science matters!!! Watch This

Computer Science is everywhere!! Watch this

Computer Science is for everyone!!! Watch this

Many careers are linked to Computer Science. Many students who take this course want to

go on to a career as a programmer – maybe you could be the next Bill Gates or Mark

Zuckerberg!

In terms of the local area, there are many new niche sectors beginning to develop that will

require computer scientists in new media and telecoms, research and development in heavy

and light industries and growing Small/Medium sized Enterprises.

Below are some link to places that you can look for more information and inspiration:

A sample of Universities

Computer Science at Oxford University

Computer Science at Cambridge University

Computer Science at Manchester University

Some Different Careers

What can you do with a Computer Science Degree?

BBC Software Engineering Apprenticeships

KPMG Software Engineering Apprenticeships

Degree Apprenticeships in Aerospace Software Development

GCHQ Careers

Links to key information:

Click here for the Course Information Guide on our website

Click here for the AQA Specification for A Level Computer Science

https://youtu.be/_IiPLtP-jm8?list=PLzdnOPI1iJNfpD8i4Sx7U0y2MccnrNZuP
https://youtu.be/QvyTEx1wyOY
https://youtu.be/mFPg96gdPkc
https://youtu.be/JG-mHQX8eZw
https://youtu.be/94NgNNs1O3Q
https://www.manchester.ac.uk/study/undergraduate/courses/2020/00560/bsc-computer-science/course-details/#course-profile
https://www.prospects.ac.uk/careers-advice/what-can-i-do-with-my-degree/computer-science
https://www.bbc.co.uk/careers/trainee-schemes-and-apprenticeships/technology/software-engineering-degree-apprenticeship
https://www.kpmgcareers.co.uk/apprentice/kpmg360-digital-software-engineering-degree-apprenticeship/london/
https://www.thescholarshiphub.org.uk/guide-to-uk-degree-apprenticeships/degree-apprenticeships-in-aerospace-software-development/
https://www.gchq-careers.co.uk/_interactive/video/cyber.mp4
https://www.dixons6a.com/uploads/files/Computer-Science.pdf
https://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-science-7516-7517/subject-content-a-level

Summer work tasks
Task 1: Different Programming Languages

There are many programming languages that are used in technology.

This task is to find out a little bit different languages - watch this video:

https://youtu.be/7bE2mI4ePeU

Summarise the contents of the video in a table with the following headings – one example is

already completed for you to follow.

Language Where this language is used

JavaScript This language is used on webpages to control what happens when users interact

with it

https://youtu.be/7bE2mI4ePeU

Structured Programming

The initial approach to programming that we use at Dixons Sixth Form Academy is called

Structured Programming. This means that our programs will always be broken down into

1. a main routine to "control" the sequence

2. and then subroutines (functions) to be "workers" that complete tasks for us

This diagram shows this for a simple problem for checking odd numbers:

The main "control" routine is on Level 0 and it uses "worker" subroutines to complete tasks.

So, from the diagram you can see that the main routine calls workers to:

o get a valid number

o determine if the number is odd

Let's try writing and running a program to see this in action.

Task 2: Starting to Program in PYTHON

Program: Odd number checker

Using PYHTON (installed on your computer) read through the explanations, type up the

program and run it.

You must complete Steps 1 to 4 BEFORE trying to run the program.

Step 1: Write the MAIN Routine

Things to note:

1. The name of the routine is preceded by a def key word. This is a " definition for a

subroutine". This is the control routine and is ALWAYS called main.

2. There are comments in the code – this is GOOD PRACTICE and we want all of your

programs to be written with these comments in them so:

a. All variables used should be listed with the type that they will be and what

data they will hold. For example, number is a string (text) and will

hold the inputted number.

b. Sections of code should be commented. This will aid debugging (finding

errors) and will help you to direct the flow the program.

c. PYTHON doesn't use and END statements for IFs or LOOPS but these are

included here as comments. This will help you to read the code and

understand it better.

Step 2: write the subroutine getNatural()

Things to note:

1. Notice that the first comment identifies the section of code as a subroutine

and states that it will return an integer.

2. All variables are listed

3. Sections of code are commented.

4. END IF and END WHILE are written in as comments.

5. The number is tested for being a natural number by using a string method called

isdigit(). This method will return true if the string contains just digits (0-

9) and false if it contains something else. This give us just Natural numbers

(greater than 0) not integers.

6. The number is returned as an INTEGER to the calling routine by using the built-in

int() function. This takes a string as a parameter and returns an

integer.

Step 3: Write the subroutine determineIfOdd()

Things to note:

1. Notice that the first comment identifies the section of code as a subroutine

and states that it will return a value.

2. This subroutine has a parameter that is written in the brackets.

3. All parameters and variables are listed

4. Sections of code are commented.

5. END IF is written in as a comment.

Step 4: enable the program to run

Things to note:

1. This line of code runs the main routine. Without it, the program will not run!

Step 5: Run your code and Test it

Testing the Program

 It is always important to test the program that you write to ensure that it works. This is

done using a Test Plan:

Number Type of Test Expected Result Success

53 Real YES

10 Real NO

2122345 Real YES

X Erroneous You will be asked to enter the

number again

Step 6: In Word

1. Copy the entire code to a Word Document under the heading Task 2.

2. Draw a Test Plan table and put suitable tests into it

3. Carry out the tests and indicate on the table if they were successful or not.

Task 3: Determine if a number is a multiple of 7

Your task is to adapt the program that you have just written so that instead of determining

if a number is odd, it determines if it is a multiple of 7.

Repeat the same steps as for Task 2 but write a new subroutine called

determineIfMultipleOfSeven() that will perform the task required.

Final Step: In Word

1. Copy the entire code to a Word Document under the heading Task 3.

2. Draw a Test Plan table and put suitable tests into it

3. Carry out the tests and indicate on the table if they were successful or not.

Task 4: Determine if a year is a century

Your task is to adapt the program that you have just written so that instead of determining

if a number is a multiple of seven, it determines if the year entered is a century.

Repeat the same steps as for Task 2 and 3 but write a new subroutine called

determineIfCentury() that will perform the task required.

Final Step: In Word:

1. Copy the entire code to a Word Document under the heading Task 3.

2. Draw a Test Plan table and put suitable tests into it

3. Carry out the tests and indicate on the table if they were successful or not.

Task 5: Determine if a year is Leap Year

CHALLENGE YOURSELF

This is a harder task and requires a little more thought.

A year is a leap year if it is divisible by 4. However, if the year is a century, it is only a leap

year if it is divisible by 400.

Your task is to adapt the program that you have just written so that instead of determining

if a year is a century, it determines if the year entered is a leap year.

Repeat the same steps as for Task 2, 3 & 4 but write a new subroutine called

determineIfLeapYear() that will perform the task required.

Final Step: In Word:

1. Copy the entire code to a Word Document under the heading Task 5.

2. Draw a Test Plan table and put suitable tests into it

3. Carry out the tests and indicate on the table if they were successful or not.

Task 6: Calculate the Hypotenuse for a right-angled triangle

From GCSE Mathematics you will understand how Pythagoras' Theorem works:

Here both a and b need validating as real (decimal) numbers that are larger than 0.

Rather than clutter up the main algorithm with the validation we can use the same

SUBROUTINE TWICE.

Step 1: write the MAIN routine

You should be able to do this yourself but here is the code:

Step 2: write the subroutine testForReal()

This subroutine contains a new construct to help trap errors so that they don't crash the

program. This is called TRY and EXCEPT.

Whatever is in the TRY block will be tried – if there is an error, the EXCEPT block takes over.

So the code works like this by testing a conversion of the number to a float (real number):

Step 3: Write the subroutine getPositiveReal()

Please note:

1. Make sure that you RETURN the number as a float – that is the data type it will need

to be in the MAIN routine.

Step 4: Write the subroutine calculateHypotneuse()

This subroutine needs to use some mathematical subroutines that are found in PYHTON's

math library. To use this, we import it. Add this line as the FIRST line of your code:

Now, you can use the pow() and sqrt() functions to do the calculation. These need

to be prefixed by the name of the library that they are in.

• pow() is the function for powers and has two parameters – the number base and

the exponent.

• sqrt() is the square root function and has one parameter – the number to find

the square root of.

Step 5: Write the subroutine displayMessage()

Step 6: Write the subroutine displayReal()

This needs to ensure that the real number is shown to two decimal places.

This is done by setting up a format pattern and then applying it to the output.

The number of decimal places (dp) is passed in as a parameter and then it is used to

construct a pattern:

{:0.3f}

This means that there will be 3 places after the decimal point and there will be no extra

padding at the beginning of the number.

The code looks like this:

Step 6: enable the program to run

Things to note:

1. This line of code runs the main routine. Without it, the program will not run!

Step 7: Run your code and Test it

Testing the Program

Complete the Expected Result column.

a b Type of Test Expected Result Success

3 4 Real c = 5

120 140 Real

18.3 33.5 Real

0 Erroneous

5 0 Erroneous

a Erroneous

56 b Erroneous

Step 8: In Word:

1. Copy the entire code to a Word Document under the heading Task 6.

2. Draw a Test Plan table and put suitable tests into it

3. Carry out the tests and indicate on the table if they were successful or not.

Appendices
Appendix 1 : What is PYTHON?

Python is a widely used high-level programming language for general-purpose

programming, created by Guido van Rossum and first released in 1991.

An interpreted language, Python has a design philosophy that emphasizes code readability

(notably using whitespace indentation to delimit code blocks rather than curly brackets or

keywords), and a syntax that allows programmers to express concepts in fewer lines of code

than might be used in languages such as C++ or Java.

The language provides constructs intended to enable writing clear programs on both a small

and large scale.

Python features a dynamic type system and automatic memory management and supports

multiple programming paradigms, including object-oriented, imperative, functional

programming, and procedural styles. It has a large and comprehensive standard library.

Python interpreters are available for many operating systems, allowing Python code to run

on a wide variety of systems. CPython, the reference implementation of Python, is open

source software and has a community-based development model, as do nearly all of its

variant implementations. CPython is managed by the non-profit Python Software

Foundation.

(from Wikipedia October, 2017)

Basic Syntax

The basic syntax in PYTHON is near to English.

There is a specific syntax that we will use and there are some rules for using them.

Input

pseudocode

INPUT identifier

PYTHON

identifier = input('prompt')

Output

Pseudocode

OUTPUT statement

PYTHON

print('message')

Selection

Pseudocode

IF condition THEN

 statement(s)

ELSEIF

 statement(s)

ELSE

 statement(s)

END IF

PYTHON

if condition:

 #statement(s)

elif:

 #statement(s)

else:

 #statement(s)

Conditional Statements

Conditional statements are those that result in either TRUE or FALSE. Operators are used to

make comparisons.

operator meaning Example (a=7, b=4)

== If the values of two operands are equal,
then the condition becomes true.

(a == b) is not True.

!= If values of two operands are not equal,
then condition becomes true.

 (a != b) is True.

> If the value of left operand is greater than
the value of right operand, then condition
becomes true.

(a > b) is True.

< If the value of left operand is less than the
value of right operand, then condition
becomes true.

(a < b) is not True.

>= If the value of left operand is greater than or
equal to the value of right operand, then
condition becomes true.

(a >= b) is True.

<= If the value of left operand is less than or
equal to the value of right operand, then
condition becomes true.

(a <= b) is True.

Chaining Conditions

Conditions can be chained together by using LOGICAL operators:

Operator Description Example (a=True, b=False)

and Logical AND
If both the operands are true then
condition becomes true.

(a and b) is False.

or Logical OR
If any of the two operands are non-zero
then condition becomes true.

(a or b) is True.

not Logical NOT not (a and b) is True.

Used to reverse the logical state of its
operand.

Iteration

Pseudocode

FOR counter, condition, step DO

 statement(s)

END FOR

PYTHON

for counter in range(1, 10):

 #statement(s)

Pseudocode

FOR EACH item IN List/Array/Set DO

 statement(s)

END FOR

PYTHON

for item in list:

 #statement(s)

Pseudocode

WHILE condition DO

 statement(s)

END WHILE

PYTHON

while condition:

 #statement(s)

Rules

1. identifiers must have meaningful names

2. identifiers must not have spaces and must use Camel Case

3. always input one value at a time

4. Lists, Arrays and Sets start with an index of 0

Reading list
Further Reading and Tasks

One of the fundamental programming tasks that you will learn about in this course is that of

Web Programming.

In order to prepare for that you could do this course on Code.org.

You will need to sign up, watch videos and then complete the tasks.

Keep a record of what you do by taking screenshots of your work and compiling it on a MS

WORD page.

Step 1: Go to Code.org

Step 2: Find the course

You need to choose Event Driven Programming in App Lab

Step 3: Sign up to the website

Step 4: Complete the Course

You will find videos, tasks and much more in here.

